Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 123(6): 2101-2121, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32319849

RESUMO

Sensory processing abnormalities are frequently associated with autism spectrum disorders, but the underlying mechanisms are unclear. Here we studied auditory processing in a mouse model of Fragile X Syndrome (FXS), a leading known genetic cause of autism and intellectual disability. Both humans with FXS and the Fragile X mental retardation gene (Fmr1) knockout (KO) mouse model show auditory hypersensitivity, with the latter showing a strong propensity for audiogenic seizures (AGS) early in development. Because midbrain abnormalities cause AGS, we investigated whether the inferior colliculus (IC) of the Fmr1 KO mice shows abnormal auditory processing compared with wild-type (WT) controls at specific developmental time points. Using antibodies against neural activity marker c-Fos, we found increased density of c-Fos+ neurons in the IC, but not auditory cortex, of Fmr1 KO mice at P21 and P34 following sound presentation. In vivo single-unit recordings showed that IC neurons of Fmr1 KO mice are hyperresponsive to tone bursts and amplitude-modulated tones during development and show broader frequency tuning curves. There were no differences in rate-level responses or phase locking to amplitude-modulated tones in IC neurons between genotypes. Taken together, these data provide evidence for the development of auditory hyperresponsiveness in the IC of Fmr1 KO mice. Although most human and mouse work in autism and sensory processing has centered on the forebrain, our new findings, along with recent work on the lower brainstem, suggest that abnormal subcortical responses may underlie auditory hypersensitivity in autism spectrum disorders.NEW & NOTEWORTHY Autism spectrum disorders (ASD) are commonly associated with sensory sensitivity issues, but the underlying mechanisms are unclear. This study presents novel evidence for neural correlates of auditory hypersensitivity in the developing inferior colliculus (IC) in Fmr1 knockout (KO) mouse, a mouse model of Fragile X Syndrome (FXS), a leading genetic cause of ASD. Responses begin to show genotype differences between postnatal days 14 and 21, suggesting an early developmental treatment window.


Assuntos
Transtornos da Percepção Auditiva/fisiopatologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Colículos Inferiores/crescimento & desenvolvimento , Colículos Inferiores/fisiopatologia , Animais , Transtornos da Percepção Auditiva/etiologia , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/fisiologia , Epilepsia Reflexa/etiologia , Epilepsia Reflexa/fisiopatologia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/complicações , Masculino , Camundongos , Camundongos Knockout , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...